On the independence number of graphs with maximum degree 3

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Independence Number of Graphs with Maximum Degree 3

Let G be an undirected graph with maximum degree at most 3 such that G does not contain any of the three graphs shown in Figure 1 as a subgraph. We prove that the independence number of G is at least n(G)/3 + nt(G)/42, where n(G) is the number of vertices in G and nt(G) is the number of nontriangle vertices in G. This bound is tight as implied by the wellknown tight lower bound of 5n(G)/14 on t...

متن کامل

The independence number in graphs of maximum degree three

We prove that a K4-free graph G of order n, size m and maximum degree at most three has an independent set of cardinality at least 1 7 (4n−m− λ− tr) where λ counts the number of components of G whose blocks are each either isomorphic to one of four specific graphs or edges between two of these four specific graphs and tr is the maximum number of vertex-disjoint triangles in G. Our result genera...

متن کامل

k-forested choosability of graphs with bounded maximum average degree

A proper vertex coloring of a simple graph is $k$-forested if the graph induced by the vertices of any two color classes is a forest with maximum degree less than $k$. A graph is $k$-forested $q$-choosable if for a given list of $q$ colors associated with each vertex $v$, there exists a $k$-forested coloring of $G$ such that each vertex receives a color from its own list. In this paper, we prov...

متن کامل

Laplacian Integral Graphs with Maximum Degree 3

A graph is said to be Laplacian integral if the spectrum of its Laplacian matrix consists entirely of integers. Using combinatorial and matrix-theoretic techniques, we identify, up to isomorphism, the 21 connected Laplacian integral graphs of maximum degree 3 on at least 6 vertices.

متن کامل

Graphs with chromatic number close to maximum degree

Let G be a color-critical graph with χ(G) ≥ Δ(G) = 2t + 1 ≥ 5 such that the subgraph of G induced by the vertices of degree 2t+1 has clique number at most t−1. We prove that then either t ≥ 3 and G = K2t+2 or t = 2 and G ∈ {K6, O5}, where O5 is a special graph with χ(O5) = 5 and |O5| = 9. This result for t ≥ 3 improves a case of a theorem by Rabern [9] and for t = 2 answers a question raised by...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Theoretical Computer Science

سال: 2013

ISSN: 0304-3975

DOI: 10.1016/j.tcs.2013.01.031